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Extensions of the Mehier-Weisner 
and Other Results for the Hermite Function 

By M. E. Cohen 

Abstract. The purpose of this paper is to present expansions which generalize some 
well-known formulae for the Hermite function. Among these are the Weisner [20] 
extension of Mehler's [17] bilinear relation, some recent results of Carlitz [41, and 
the Bateman [2] addition theorem. A bilateral generating function involving the 
product of the Hermite and ultraspherical polynomials is given. Finally, some gen- 
eral polynomial expansion theorems are derived. 

I. Introduction. Recently we proved the expansion [5] 

00 (n + 0! (a +,B+ 1+ O)n tn 

n=O n!(a + + 21 + 2)n n +I 

(1 .1) 
(2) 1! F(21 + a + + 2) p(O43) ( p'\Q( )(1 + p) 

r(l?+a+l)r(l?+ 3+?)ta+ 9 I t _t 

where p = (1 - 2xt + t2)/2, I tl < 1, 1 is a nonnegative integer, and P and Q are the 

Jacobi polynomial and function, respectively. This type of generating function, where 
the degree of the polynomial is (n + 1), was previously not known for the Jacobi poly- 
nomial. The result (1.1) prompted us to investigate expansions of this type for bilinear 
generating functions. 

For the Hermite polynomial, Mehler gave 

(1.2) (x)H(y) 2 (-t2 /2 exp y2( t21 

See also Askey [1, p. 16, Eq. 2.44w], [l,p. 35]. Erde'lyi [7], Feldheim [8], Hardy 
[12], Hille [13], Sarmanov et al. [18] , Watson [19], and others have worked on 
(1.2). A hundred years later Weisner [20], with the aid of group theoretical methods, 
generalized (1.2) to give 

?? tn 

E nlHn(x) Hn+,y 

(1.3) 2)-2v-1/2 e y2t2- 2xyt + t2x21 F y-xtl 

where I tl < 1, and v is an arbitrary constant. Hv is the Hermite function, defined as 
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(1.4) H(x) = 2vr(?%) (1 F x21 ? 2r(- ?%)X %(1 - v); X2- 

(=r(lh (i -)) 
1 

1L?; r(- 1/2 ) 11L 3/2; J 
valid for all complex values of x and v, and r(v) is the gamma function. (1.3) is not 
extensively quoted in the literature and it was not known to the author when this work 
was done. Among other results in his paper, Carlitz [4] reproves (1.3) using series iter- 
ation and integration, but for the case v a nonnegative integer. 

We now present one generalization of (1.3). 

(1.5) X - Gn 5(y, a)Hn 5(x, ) +)=( ?Go's ts)i/s a 

Xtsr < 1,where 
(_1)P yP 

(1.6) Gn,s(y, a)= j 
(=O p! r(a - n/s - p/s) 

is valid for complex values of az, n, and y, for s an integer > 2. 

(1.7) H l][n/si Xkxn-skn! [n F (-n, s); -SS _ l)sX (1.7 
Hs(x, X)= E k!(n - sk)! 

-; S( s)1 

where A( - n, s) = - n/s, (- n + 1)/s, . . . , (- n + s - 1)/s. Note that the Hermite 
function defined in (1.4) is connected with (1.6) through the relation 

(1.8) Gn,2 (2x, ? ) 2-nv exp(-x 2) 

and with the generalized Hermite polynomial (1.7) by 

(1.9) Hn,2(2x, - 1) = Hn(x). 

One could consider (1.6) as a definition for a generalized Hermite function. On the 

other hand, (1.7) is the well-known generalized Hermite polynomial, which occurs in 

statistical problems. See Gupta and Jain [11], Gould and Hopper [9], and also Lukacs 

[15] for properties and applications. In Cohen [6], expansion problems connected 

with this polynomial are established. Putting s = 2, a = lh - 'v, X =-1 in (1.5), and 

algebraic manipulation yields Weisner's result (1.3). 

(1.5) is in fact a special case of the more general expansion 

i tnj 

E GN, S(Y ) fl n.s(xj, Xi) 
ni,n2, ... j=l n j. , I 

(1.10) 

for L~X,.tfI<1,whereN= n1ln + tajndlls 

for I I MtjS < 1, where N = n, + n. + ***+ n,, and 
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In (1.10), let s = 2, y = 27r, ,u= -?V, X,.=-1, xj = 2tj. Then for the Hermite 
polynomial 

itn. 

E 2-NHN+v(r?) I H (j) 
n sn2 .ni j= 1 n1! 

=exp [7 - t I v HvL;1Z- 

For v = 0, one obtains Eq. (2.3) of Carlitz [4] , which is one of the main results of his 
paper. 

Now Bateman [2, p. 890, Eq. 29] derived an addition theorem for the Hermite 
function 

(1.12) (1 ? t2)l2vHv[ + ?2)1/2] = (- )(- v) t Hv_(y)Hn(x) 

where (Q) = (-l)(-v)/nn! and I ti < 1. 
For the case v a nonnegative integer, (1.12) was first given by Kampe' de Fe'riet 

[14]. (1.12) is also essentially an addition theorem for the parabolic cylinder function 
as 

Hv(x) = 21/2v exp(?2x2)Dv(2l/2x) [16, p. 212,Eq. 5]. 

We present a generalization of (1.12): 

00 tn _ s - -xt 

(1.13) E n- Gn,,(Y, a)Hn,,(X, (1 - ts__)Go_s I _ts)_l_s a_ 

for I X tsI < 1, where 

(1 .14) -~(y)= ??00 (-I )y Pr(a + n/s + p/s) 

is valid for complex values of a, n and y, for s an integer > 2. (1.14) is seen to be con- 
nected to the Hermite function through the relation 

(1.15) Gn,2(2y, ?2a) = 2r(n + a)H-a-n(y). 

Putting s = 2, a = 1-/2, X = - 1 in (1.13) and simplifying gives (1.12). We have, in 
fact, a more general expression of which (1.13) is a particular example. 

i t7i 
6 N, S(Y H n EH,sS(X;1 X)Kj 

(1.16) n1 ,n2 ...i xni [=-1 

=Xi- s j , [ _ 1t,s} i /s 
y t 

for I I X tfl < 1, where the symbols are defined in (1.10). Letting y = 271, s = 2, ,u = 
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-?2v, Xi=-1, xj = 2tj in (1.16), the following expression for the Hermite polynom- 
ial presents itself. 

tji j 

E (-V)N Hv_ N(7) n Hn*(j 
nj ,n2,-..,ni j=lj- 

(1.17) 

= { 1 + 21 E tj } Hj[ Et}'2 

Another extension of (1.12) is derived for the case v a nonnegative integer. This 
addition theorem for the generalized Hermite polynomial takes the finite form 

(1.18) E n!t Hn,s(x, X) H-n,s(y, IJ) = H S(y - xt, u + X(- t)S). 
n=O 

Hns(x, X) is defined in (1.7). For s = 2, X =-1, x -2x, y -2y, v=1, 
(1.18) reduces to (1.12), for v a nonnegative integer. (1.18) admits a more general ex- 
pression 

NAl i tn. 

E (l O)N l-N,s(y, ) [I ' Hns(Xj Il) 
(1.19) n ,., =1=n 

= Hj S[Y- E t1x,,u + (- I)sZXjt,t], 

where N= n? + n2 + + nil 
The next result presented is the bilateral generating function involving the Her- 

mite and Gegenbauer polynomials. 

0 2(h + _ M2 I/)n tn/-12 _ '/ V/ + 1n2/2 - /2n (x)H() 
~~0~('v?2-?Yn)n r(? -?vP-?n)n 

(1.20) - 2"(1 I/2 {1 + t2(l -X2)1 

*exp [j+ t2( X2)HV ? 2)V2(l t2 _ t2X2)1/2 

where I t2(1 - x2)1 < 1. For other bilateral relations pertaining to the Hermite poly- 
nomial, see Brafman [3]. 

The results in the introduction are proved in Section II. The method of proof 
differs from that in Carlitz [4], Hille [13], Watson [19], and others. Section III is de- 
voted to the presentation and proof of expansions involving more generalized polyno- 
mials. These expressions appear to give new and known results for the Hermite and ultra- 
spherical polynomials. 

II. Proofs of Section I Results. 
(i) Proof of (1.5) and (1.10). The general proof of (1.10) is given, which includes 

its one-dimensional special case (1.5). 
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The left-hand side of (1.10) is by definition 

(tlxl) n1(t2X2 )n2 *.*. (tiX,)ni Fp nl, S); (7_ J)s ssX, 
n1! n *! sn!o x J 

n 1n 2, ... ni 1 2' 1 

(2.1) AF0 (- nv s); (- 1)s ] . F i s); (- .os[_,] 

oo ~~~(_ 1)PyP 

p=O p! r(a - nl/s - n2/s - * - ni/s - p/s) 

Using the double series transformation 

[n/sl 00 

(2.2) E E f(n, k)= Y f(n + sk, k) 
n=0 k=O n=O k=0 

for i sums 

n1 n1 + skl,n2 n2 + sk2, . . . Ini ni + ski, 

the gamma function relation 

i/r(a - pls - nlls - n21S - ***-n,ls - k, - k2 - -ki) 

(2.3) (1)kl+k2+ -+k(l a + p/S + nl/s + n2/S + + niIS)k +k +ss+k 
=~~~~~~~~~~~~~~~~~ 2 

r(a- p/s- nl/s - n2/s - - njls) 

and the expansion 

(1-a +p/s + nl/s + n2/s + + ni/S)kl+k2+..+ki 

kl j,2,... ,ki ...k2!* ki! 
(2.4) k ~ ~ ~~~k k 

(2.4) (~ X1ts) "(- Xtk) 2 . . . (- Xi ti 

(1 + X t+ + *t * + + Xts 1i-nll1s-n2/1S--nj/s-p/s 

(2.1) simplifies to 

W 1(x1t1) 1(x2t2) 2 * (xit,)ni(_ I)PyP 

,.,zp=o n1! n2. * * np! r(a-p/s- nl/s- n2/s- -ni/s) 

(2.5) * (1 + X1ts + X2ts + ? * * -1-n Is-n2ls- --nils-pls 

=0 n ( 1),( P)n.I+ .n-... +ni (Xltl)p ( (Xt, pi 

p=o nl ,..ni n ! ... ni! p! ][(a- p/S) 
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(2.6) yPfl1*s-i(l + xit ? * *?* 01t ) 

(. (-1)P(1 + Xits + ? * ?+ Xiti )1P IS(y - tx1 - *- 
(2.7) = v:1tx) 

p=O p! r(a - p/s) 

Going from (2.5) to (2.6) entails the use of the series transformation, and from (2.6) to 
(2.7) we have employed an expansion similar to (2.4). 

(2.7) is the right-hand side of (1 .10) by definition. 
(ii) Proof of (1.13) and (1.16). Again, it is sufficient to prove (1.16). 
We follow the procedure as in the proof of (1.10), with modifications. 
The left-hand side of (1.16) may be expressed as 

(t_X n . 
.*. (tixi)ni F\(-nl, S); ( )_S___ 

.l n1! * n! l ; _ (- sX1 J 

n ....ni nI -1).! ypP(?1/?..?1s?ps (2.8) . . s F r ni. S); ( l,Ss 

0 
( lpy Pr(at + nils + ***+ nd/s + p/s) 

p=O p 

Using the double series transformation (2.2), the gamma function simplification 

r(a? + ni/s + + n1/s + p/s + K) 

(2.9) 
= r(a ?n/s ? I + n,/s + p/s)(a? + n1/s + + nils + P/S)K 

where K = k? + ? * * + ki, the remainder of the proof is essentially the same as in (i), 
giving the right-hand side of (1.16). 

(iii) Proof of (1.18) and (1.19). It suffices to prove (1.19). 
The left-hand side of (1.19) can be put in the form 

N61 (_l)N(tlxl)l1 ... (txi) niy UN rA(np s); (_l)sssX 

where N= n1 + ? *+n1. With the aid of the double series transformation (2.2) for 
i sums, n1 - ni ? ski and the expansion 

(-l?+sk1 ?+. ? *+Ski ?SP)N_(t1x1~l 1. (t1x1'\ i 

E . s F 

(2. 11) nl ni n ! ... ni! Y / 

= -t1X1 -... tiX1 I-sk1-- --ski-sp 

(2.10) reduces to 
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skl+ - +ski+sp<l (-l)skl+..+skk+sp(tl) (ti) ( X; 

(2.12) kl . ki,P i 

I- ski --sip (y - t1x1 - - tixi) kl sk sp 

With the aid of the series iteration 

00 K <p 

(2.13) E f(p,dk., ki)= I , f(p - K, k, ki) 
k1 .ki,P p=O k1. ki 

where K =k + + ki, and 

1 ~ ~ ~ ~ ~ 1j K, 6P P-K(_p)K(_I)(s+l)K tsk, . .. tski,kl- . ki 

(2.14) kl. .ki k1! 
.. ki! 

={ + X1 (- tl)s + ***+ tz( t)S}P, 

(2.12) simplifies to give 

[i/sl (y - tlxl - - tixi)-sP(- l)SP(-l)sp 
(y - t x- tixix E 

(2.15S) = 

*{+ x1(- tf+ + X(-ti)s}P. 

(2.15) is the right-hand side of (1.19). 
(iv) Proof of (1.20). The left-hand side of (1.20) is expressed as 

'? (-Xt)_ F-?n,- ?n + ; [n/21 2n-2kyn-2k(_l)k 

(2.16)" 
X 

r( lhv- 'n) 2 1L - v-n; x J (n-2k)! 

[n/2 1(2xyt)n (I)k(l - l/x2)l/2n-?2v 

n=O k=O k! 2k(fn - 2k)! r( -%v - ?n)y2k 
(2.17) 

* 2F1 [?_Ev 
- %n ] x 

(2.18) [-2yt(x2 - 1)1/2]n[(x2 _ 1)t2]k[(I - 1Ix2)] /2P(_%v)p(% - %P)p(%p + % + hn p) 

n,p,k=0 n! p! k! r(? - 'v - ?n + p)x2P 

In (2.16) we have used the representation (3.20) for the ultraspherical polynomial. 
(2.16) to (2.17) implies the Kummer transformation. (2.18) results from (2.17) by 
using the double series transformation (2.2). 

Now 

219 {v + + 'hn-P)k. t2(X2 - 1)}k = [1 + t2(1 -X2)]l/2v1/2?n+p 

k=O 

Combining ('2.18 ) and (2.19) and using! once agzain the Kummer transformation gives 
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00 [2 (-2xyt)n[1 + t2(1 _ x2)]-12v-1/2v-l/2n(l + t2)Y/2v-Y/2n 

n=0 p0 22Pp! (n-2p)! F(?M yw2 An+p) 

(2.20) l+2( -2) 8 

(-2xyt) [1 + t2(1 _x2)]-1/2V-1/2-Y/2n(l + t2)-Y/2n+Y/2v 

n=0 n! 1(?/2-lhv--?2n) 

(2.21) ?? [y2t2/(l +t2)] p 

From (2.20) to (2.21) we have used the double series transformation. In (2.21) the 
series over p is seen to be the exponential, and using the definition of the Hermite func- 
tion gives the required right-hand side of (1.20). 

III. Generalized Polynomial Expansions. This section deals with general expan- 
sion theorems. Some special cases are 

oo (n +l)! 
(a) E nCv(x) CnM +(xy) 

(3.1) ( ()1"Zl! (I)vlh 1 + M, 121 + h; y2( - x2) 
(lhl)! (- x2y2)M+/21 2 [ V + ?; (1- x2y2)J 

=0 for 1 odd, 

and I yl < 1, where CA (x) is the Gegenbauer polynomial. For special values, the right- 
hand side of (3.1) may be expressed as well-known functions, including the Jacobi func- 
tion. It also reduces to simple expressions for 2v = 1 or 2v - 2, + 1 = 1. 

00(n +1)' 
(b) E ( 2nn!) yn Hn (X)Cn,+I (xy) 

n= 

(3.2) ~ (M)v~1 - x2y2Y-M zl 2F2 [ + + 2 forl even, 

=0 for 1 odd, 

where the right-hand side is a divergent series. See Luke [16, Vol. I, Chapter IV, Sec- 
tion (4.7), and Chapter VI, Sections (6.2.7) and (6.2.11)] for a fine exposition of the 
asymptotic expansion and significance of the 2 Fo divergent series. 

(C) E (XI ) 2 = (_v)! expy(x2) for l even, 
(3.3) n =0 (On 

C' nIY 

0 for 1 odd, 

where IyI <1. 
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We now proceed with the proof of some general theorems. 

For {ak} and {bk} arbitrary complex sequences, ,u an arbitrary complex number, 

and 1 a nonnegative integer, 

00 
tnHn(- A 

/2 11 

E n (n l)Y2! k(g 77) forleven, 

= 0 for l odd, 

where I< 1,and 

[n/2 ] (-)k?72k(-n)2k{ ak} 

(3a5) n(71) E 22kk! (?21 + ?2)k 

00 ( 72 A)ka} 
(3.6) 0(, 7) = exp(t2) E k7 k 

k=0 

oo (l/21)n tn (-_1 )2 Il 

(3.7) n=O (l)nn! 
n = (?1)! I(t, 7) for 1 even 

= 0 for l odd, 

where I< 1,and 

[Y12(n+l)J [-n+)] I~)k{ al/ll}~n+12k 
(3.8) Bn +(1) = 

(n 
2k ) 2kl/2k-+n-ki 

k=O 

[n/21 n2fb}7p 
(3.9) Dn) = 0 22p-np!(-hln 

(3.10) 
00 {ak}{ bk }72kt2k 

00 (n + 1)! n (.l)Y2ll A(S, ) for l even, 

(31) n=O (h) 

= 0 for l odd, 

where < 1, and 

(3.12) '(, 1) = (1 - t2) -I-Y2 22 j?2 
k=O k! I 

An(,q) is defined by (3.5) and CnP+(Q) is the Gegenbauer polynomial. 

(3.6), (3.9), and (3.12) are convergent; and An(,q), Bn +1(,), Dn(n) are assumed 

to exist. 
Proof of (3.4). Putting t = y/x in (1.3), 

(3.13) 00 (/ Hy(x) H,X(Y) exp (y2) E n.12n' H(X)Hn+i(Y) y2/X2)Y/21+Y12H() 
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Note that H1(O) = e where 

(_1)l)2 1! 
e = (?1)! if I is even and e = 0 if lis odd. 

Using (2x)n 

Hn(X) = n! 2F0[-%n,-?n + ;-; ;- 

and a corresponding expression for Hn + (y), putting x I 1/z?1, and expanding 

(1 -y2/X2)- 21-2 =F[ + ; - zy2] 

reduces (3.13) to 
00 2n +ly2n+l 

n= n! 2Fo0-?n,-n + ;-;-z] n=O 

(3.14) 2F[-(n + l),-%(n + l) + ; ;-l/y2] 

= e exp(y2) 1Fo[ph,I + ?;-; zy2]. 

We take the inverse Laplace of (3.14) with respect to z to give 
00 2n +ly2n+l 

n!t 2Fjt-?2(n + 1), -?%(n + 1) + ?;-; -l/y2] 
n- n 

F W ) 

(3.15) r-%n,-%n + ;_ 

2 %Llh + l;_ 

(3.16) =e exp{y2(1 + z)}, 

)=eexp(y2) 
0 

(zy2)k 
(3.17) e x __ 

k=0 

Taking Laplace and inverse Laplace transforms of (3.15) and (3.17) with respect to z, 

and changing variables to t and 7, results in Eq. (3.4). 

Proof of (3.7). Now (3.16) may also be expanded in the form 

(l + Z)k y2k 

(3.18) 6 
k-O 

Taking transforms of (3.15)..and (3.18) with respect to y and z, and changing variables 
gives (3.7). The representations for the Gegenbauer polynomial 

(2 X)m, x' ~ - M, -%M + x; x2- 
(3.19) CA((X) ) Xm! 2F1 2{+:l ?; x 1 

(3.20) (X)m (2x) F [- 7M,1;m;?; 1/ X2] 

are used [10, p. 1030]. 
Proof of (3.1 1). Taking Laplace transforms of (3.15) and (3.16) with respect to 

y, one has 
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o n! 1 - 
(3.21) n= L 

2 21 [ 
-1 

(3.22) e { l-y2(l + z)} --1/21 

00(Zy2)k(p +?lh)k (3.23) e y2}l k-%1 E kM 

Taking transforms of (3.21) and (3.23) with respect to z and changing variables gives 
(3.11). The representation (3.20) is employed. 

The special case (3.1) may be deduced from (3.11) by applying the representation 
(3.19) to the polynomial An(0). (3.2) is derived from (3.11), while (3.3) is derived 

from (3.4). 
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